3.1 \(\int \frac {c+d x^2}{a+b x^4} \, dx\)

Optimal. Leaf size=247 \[ -\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} b^{3/4}} \]

[Out]

-1/8*ln(-a^(1/4)*b^(1/4)*x*2^(1/2)+a^(1/2)+x^2*b^(1/2))*(-d*a^(1/2)+c*b^(1/2))/a^(3/4)/b^(3/4)*2^(1/2)+1/8*ln(
a^(1/4)*b^(1/4)*x*2^(1/2)+a^(1/2)+x^2*b^(1/2))*(-d*a^(1/2)+c*b^(1/2))/a^(3/4)/b^(3/4)*2^(1/2)+1/4*arctan(-1+b^
(1/4)*x*2^(1/2)/a^(1/4))*(d*a^(1/2)+c*b^(1/2))/a^(3/4)/b^(3/4)*2^(1/2)+1/4*arctan(1+b^(1/4)*x*2^(1/2)/a^(1/4))
*(d*a^(1/2)+c*b^(1/2))/a^(3/4)/b^(3/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {1168, 1162, 617, 204, 1165, 628} \[ -\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/(a + b*x^4),x]

[Out]

-((Sqrt[b]*c + Sqrt[a]*d)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c +
 Sqrt[a]*d)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[b]*c - Sqrt[a]*d)*Lo
g[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c - Sqrt[a]*d)*L
og[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(3/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rubi steps

\begin {align*} \int \frac {c+d x^2}{a+b x^4} \, dx &=\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {a} \sqrt {b}-b x^2}{a+b x^4} \, dx}{2 b}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {\sqrt {a} \sqrt {b}+b x^2}{a+b x^4} \, dx}{2 b}\\ &=\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}-\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt {2} a^{3/4} b^{3/4}}\\ &=-\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}\\ &=-\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 183, normalized size = 0.74 \[ \frac {-\left (\sqrt {b} c-\sqrt {a} d\right ) \left (\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )-\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )\right )-2 \left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {a} d+\sqrt {b} c\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{4 \sqrt {2} a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/(a + b*x^4),x]

[Out]

(-2*(Sqrt[b]*c + Sqrt[a]*d)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*(Sqrt[b]*c + Sqrt[a]*d)*ArcTan[1 + (Sq
rt[2]*b^(1/4)*x)/a^(1/4)] - (Sqrt[b]*c - Sqrt[a]*d)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] -
Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]))/(4*Sqrt[2]*a^(3/4)*b^(3/4))

________________________________________________________________________________________

fricas [B]  time = 0.66, size = 767, normalized size = 3.11 \[ -\frac {1}{4} \, \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) + \frac {1}{4} \, \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) + \frac {1}{4} \, \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) - \frac {1}{4} \, \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*sqrt(-(a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*
x + (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 - a^2*b*c*d^2)*sqrt(-(a*b*sqrt
(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))) + 1/4*sqrt(-(a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*
d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d
^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 - a^2*b*c*d^2)*sqrt(-(a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*
b^3)) + 2*c*d)/(a*b))) + 1/4*sqrt((a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*lo
g(-(b^2*c^4 - a^2*d^4)*x + (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - a*b^2*c^3 + a^2*b
*c*d^2)*sqrt((a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))) - 1/4*sqrt((a*b*sqrt(-
(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^2*d*sqrt(-(
b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - a*b^2*c^3 + a^2*b*c*d^2)*sqrt((a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*
d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b)))

________________________________________________________________________________________

giac [A]  time = 0.19, size = 241, normalized size = 0.98 \[ \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c + \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c + \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="giac")

[Out]

1/4*sqrt(2)*((a*b^3)^(1/4)*b^2*c + (a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4)
)/(a*b^3) + 1/4*sqrt(2)*((a*b^3)^(1/4)*b^2*c + (a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))
/(a/b)^(1/4))/(a*b^3) + 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*d)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) +
sqrt(a/b))/(a*b^3) - 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*d)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqr
t(a/b))/(a*b^3)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 260, normalized size = 1.05 \[ \frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, c \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{4 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, c \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{4 a}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, c \ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{b}}}\right )}{8 a}+\frac {\sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{4 \left (\frac {a}{b}\right )^{\frac {1}{4}} b}+\frac {\sqrt {2}\, d \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{4 \left (\frac {a}{b}\right )^{\frac {1}{4}} b}+\frac {\sqrt {2}\, d \ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a}{b}}}\right )}{8 \left (\frac {a}{b}\right )^{\frac {1}{4}} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(b*x^4+a),x)

[Out]

1/8*c*(a/b)^(1/4)/a*2^(1/2)*ln((x^2+(a/b)^(1/4)*x*2^(1/2)+(a/b)^(1/2))/(x^2-(a/b)^(1/4)*x*2^(1/2)+(a/b)^(1/2))
)+1/4*c*(a/b)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/b)^(1/4)*x+1)+1/4*c*(a/b)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(a/b)
^(1/4)*x-1)+1/8*d/b/(a/b)^(1/4)*2^(1/2)*ln((x^2-(a/b)^(1/4)*x*2^(1/2)+(a/b)^(1/2))/(x^2+(a/b)^(1/4)*x*2^(1/2)+
(a/b)^(1/2)))+1/4*d/b/(a/b)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/b)^(1/4)*x+1)+1/4*d/b/(a/b)^(1/4)*2^(1/2)*arctan(2
^(1/2)/(a/b)^(1/4)*x-1)

________________________________________________________________________________________

maxima [A]  time = 2.40, size = 221, normalized size = 0.89 \[ \frac {\sqrt {2} {\left (\sqrt {b} c + \sqrt {a} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} {\left (\sqrt {b} c + \sqrt {a} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} d\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} d\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="maxima")

[Out]

1/4*sqrt(2)*(sqrt(b)*c + sqrt(a)*d)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sq
rt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 1/4*sqrt(2)*(sqrt(b)*c + sqrt(a)*d)*arctan(1/2*sqrt(2)*(2*sq
rt(b)*x - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 1/8*sqrt(2
)*(sqrt(b)*c - sqrt(a)*d)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(3/4)) - 1/8*sqrt(
2)*(sqrt(b)*c - sqrt(a)*d)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(3/4))

________________________________________________________________________________________

mupad [B]  time = 0.38, size = 599, normalized size = 2.43 \[ -2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}-\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}-\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}-\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}\right )\,\sqrt {-\frac {b\,c^2\,\sqrt {-a^3\,b^3}-a\,d^2\,\sqrt {-a^3\,b^3}+2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}}-2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}-\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}-\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}-\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}\right )\,\sqrt {-\frac {a\,d^2\,\sqrt {-a^3\,b^3}-b\,c^2\,\sqrt {-a^3\,b^3}+2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x^2)/(a + b*x^4),x)

[Out]

- 2*atanh((8*b^3*c^2*x*((d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3) - (c^2*(-a^3*b^3)^(1/2))/(16*a^3*b^2) - (c*d)/(8*a
*b))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 + (2*b*c^3*(-a^3*b^3)^(1/2))/a^2 - (2*c*d^2*(-a^3*b^3)^(1/2))/a) - (8*a*b
^2*d^2*x*((d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3) - (c^2*(-a^3*b^3)^(1/2))/(16*a^3*b^2) - (c*d)/(8*a*b))^(1/2))/(2
*b^2*c^2*d - 2*a*b*d^3 + (2*b*c^3*(-a^3*b^3)^(1/2))/a^2 - (2*c*d^2*(-a^3*b^3)^(1/2))/a))*(-(b*c^2*(-a^3*b^3)^(
1/2) - a*d^2*(-a^3*b^3)^(1/2) + 2*a^2*b^2*c*d)/(16*a^3*b^3))^(1/2) - 2*atanh((8*b^3*c^2*x*((c^2*(-a^3*b^3)^(1/
2))/(16*a^3*b^2) - (c*d)/(8*a*b) - (d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 - (2*b
*c^3*(-a^3*b^3)^(1/2))/a^2 + (2*c*d^2*(-a^3*b^3)^(1/2))/a) - (8*a*b^2*d^2*x*((c^2*(-a^3*b^3)^(1/2))/(16*a^3*b^
2) - (c*d)/(8*a*b) - (d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 - (2*b*c^3*(-a^3*b^3
)^(1/2))/a^2 + (2*c*d^2*(-a^3*b^3)^(1/2))/a))*(-(a*d^2*(-a^3*b^3)^(1/2) - b*c^2*(-a^3*b^3)^(1/2) + 2*a^2*b^2*c
*d)/(16*a^3*b^3))^(1/2)

________________________________________________________________________________________

sympy [A]  time = 0.69, size = 109, normalized size = 0.44 \[ \operatorname {RootSum} {\left (256 t^{4} a^{3} b^{3} + 64 t^{2} a^{2} b^{2} c d + a^{2} d^{4} + 2 a b c^{2} d^{2} + b^{2} c^{4}, \left (t \mapsto t \log {\left (x + \frac {64 t^{3} a^{3} b^{2} d + 12 t a^{2} b c d^{2} - 4 t a b^{2} c^{3}}{a^{2} d^{4} - b^{2} c^{4}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(b*x**4+a),x)

[Out]

RootSum(256*_t**4*a**3*b**3 + 64*_t**2*a**2*b**2*c*d + a**2*d**4 + 2*a*b*c**2*d**2 + b**2*c**4, Lambda(_t, _t*
log(x + (64*_t**3*a**3*b**2*d + 12*_t*a**2*b*c*d**2 - 4*_t*a*b**2*c**3)/(a**2*d**4 - b**2*c**4))))

________________________________________________________________________________________